Deprecated: Function Elementor\DB::is_built_with_elementor is deprecated since version 3.2.0! Use Plugin::$instance->documents->get( $post_id )->is_built_with_elementor() instead. in /home/u214178821/domains/sciedutut.com/public_html/wp-includes/functions.php on line 5383
BeBr2 Molecular Geometry - Science Education and Tutorials

BeBr2 Molecular Geometry

Drawing and predicting the BeBr2 molecular geometry is very easy. Here in this post, we described step by step method to construct BeBr2 molecular geometry.

Key Points To Consider When drawing The BeBr2 Molecular Geometry

A three-step approach for drawing the BeBr2 molecular can be used. The first step is to sketch the molecular geometry of the BeBr2 molecule, to calculate the lone pairs of the electron in the central beryllium atom; the second step is to calculate the BeBr2 hybridization, and the third step is to give perfect notation for the BeBr2 molecular geometry.

The BeBr2 molecular geometry is a diagram that illustrates the number of valence electrons and bond electron pairs in the BeBr2 molecule in a specific geometric manner. The geometry of the BeBr2 molecule can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory) and molecular hybridization theory, which states that molecules will choose a BeBr2 geometrical shape in which the electrons have from one another in the specific molecular structure.

Finally, you must add their bond polarities characteristics to compute the strength of the Be-Br bond (dipole moment properties of the BeBr2 molecular geometry). The beryllium-bromine bonds in the beryllium bromide molecule(BeBr2), for example, are polarised toward the more electronegative value bromine atom, and because both bonds have the same size and polarity, their sum is zero due to the BeBr2 molecule’s bond dipole moment, and the BeBr2 molecule is classified as a nonpolar molecule.

The molecule of beryllium bromide (with linear BeBr2 molecular geometry) is tilted at 180 degrees and has a difference in electronegativity values between bromine and beryllium atoms, with bromine’s pull being greater than beryllium’s. As a result, it has no dipole moment in its molecular structure. The BeBr2 molecule has no dipole moment due to an equal charge distribution of negative and positive charges.

BeBr2 Molecular Geometry

BeBr2 electron and molecular geometry

According to the VSEPR theory, BeBr2 possesses a linear molecular geometry and a BeBr2-like electron geometry. Because the center atom, beryllium, has two Be-Br bonds with the two bromine atoms surrounding it. The Br-Be-Br bond generates a 180-degree angle in the linear geometry. The BeBr2 molecule has a linear shape because it contains two bromine atoms.

There are two Be-Br bonds at the linear BeBr2 molecular geometry. After linking the two bromines in the linear form, it maintains the linear-like structure. In the BeBr2 linear molecular geometry, the Be-Br bonds have stayed in the two terminals of the molecule.

The center beryllium atom of BeBr2 has no lone pairs of electrons, resulting in linear electron geometry. However, the molecular geometry of BeBr2 is linear in nature. It’s the BeBr2 molecule’s symmetrical geometry. As a result, the BeBr2 molecule is nonpolar.

How to find BeBr2 molecular geometry

Calculating lone pairs of electron in BeBr2 molecular geometry:

  1. Determine the number of lone pairs on the core be an atom of the BeBr2 Lewis structure.
    Because the lone pairs on beryllium are mostly responsible for the BeBr2 molecule geometry distortion, we need to calculate out how many there are on the central beryllium atom of the Lewis structure.

Use the formula below to find the lone pair on the BeBr2 molecule’s central beryllium atom.

L.P(Be) = V.E(Be) – N.A(Be-Br)/2


Lone pair on the central beryllium atom = L.P(Be)

The core central beryllium atom’s valence electron = V.E(Be)

Number of Be-Br bonds = N.A (Be-Br)

calculation for beryllium atom lone pair in BeBr2 molecule

In the instance of BeBr2, the central atom, beryllium, has two electrons in its outermost valence shell and two Be-Br bond connections.

As a result of this, L.P(Be) = (2 –2)/2=0

In the BeBr2 electron geometry structure, the lone pair on the central beryllium atom is zero. It means there are no lone pairs in the core beryllium atom.

Calculate the number of molecular hybridizations of BeBr2 Molecular Geometry

How do you find the BeBr2 molecule’s hybridization? We must now determine the molecular hybridization number of BeBr2.

The formula of BeBr2 molecular hybridization is as follows:

No. Hyb of BeBr2 = N.A(Be-Br bonds) + L.P(Be)

No. Hy of BeBr2= the number of hybridizations of BeBr2

Number of Be-Br bonds = N.A (Be-Br bonds)

Lone pair on the central beryllium atom = L.P(Be)

Calculation for hybridization number for BeBr2 molecule

In the BeBr2 molecule, beryllium is a core atom with two bromine atoms connected to it and no lone pairs. The number of BeBr2 hybridizations (No. Hyb of BeBr2) can then be estimated using the formula below.

No. Hyb of BeBr2= 2+0 =2

The BeBr2 molecule hybridization is two. The sp hybridization is formed when one S orbital and one p orbital join together to form a molecular orbital.

Notation of BeBr2 Molecular Geometry:

Determine the form of BeBr2 molecular geometry using VSEPR theory. The AXN technique is commonly used when the VSEPR theory is used to calculate the shape of the BeBr2 molecule.

The AXN notation of BeBr2 is as follows:

The center carbon atom in the BeBr2 molecule is denoted by the letter A.

The bound pairs (Be-Br) of electrons to the core atom are represented by X.

The lone pairs of electrons on the center beryllium atom are denoted by the letter N.

Notation for BeBr2 molecular geometry

We know that beryllium is the core atom, with two electron pairs bound (two Be-Br) and zero lone pairs. The general molecular geometry formula for BeBr2 is AX2.

According to the VSEPR theory, if the BeBr2 molecule has an AX2 generic formula, the molecular geometry and electron geometry will both be linear geometrical forms.

Name of MoleculeBeryllium bromide
Chemical molecular formulaBeBr2
Molecular geometry of BeBr2Linear form
Electron geometry of BeBr2Linear form
Hybridization of BeBr2SP
Bond angle (Br-Be-Br)180º degree
Total Valence electron for BeBr216
The formal charge of BeBr2 on beryllium0

Summary:

In this post, we discussed the method to construct BeBr2 molecular geometry, the method to find the lone pairs of electrons in the central beryllium atom, BeBr2 hybridization, and BeBr2 molecular notation. Need to remember that, if you follow the above-said method, you can construct the BeBr2 molecular structure very easily.

What is BeBr2 Molecular geometry?

BeBr2 Molecular geometry is electronic structural representation of molecule.

What is the molecular notation for BeBr2 molecule?

BeBr2 molecular notation is AX2

The polarity of the molecules

Polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:

Information on BeBr2 molecule

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar