Deprecated: Function Elementor\DB::is_built_with_elementor is deprecated since version 3.2.0! Use Plugin::$instance->documents->get( $post_id )->is_built_with_elementor() instead. in /home/u214178821/domains/sciedutut.com/public_html/wp-includes/functions.php on line 5383
How to draw a CF4 Lewis Structure? - Science Education and Tutorials

How to draw a CF4 Lewis Structure?

Drawing CF4 Lewis Structure is very easy. Here in this post, we described step by step method to construct CF4 Lewis Structure.

How to draw a CF4 Lewis Structure?

Key Points To Consider When drawing The CF4 Lewis Structure

A three-step approach for drawing the CF4 Lewis Structure can be used. The first step is to sketch the Lewis structure of the CF4 molecule, to add valence electron around the carbon atom; the second step is to valence electron to the fluorine atom, and the final step is to combine the step1 and step2 to get the CCl4 Lewis Structure.

The CF4 Lewis structure is a diagram that illustrates the number of valence electrons and bond electron pairs in the CF4 molecule. The geometry of the CF4 molecule can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory), which states that molecules will choose a CF4 geometrical shape in which the electrons have from one another.

Finally, you must add their bond polarities to compute the strength of the C-F bond (dipole moment properties of the CFl4 molecule). The carbon-fluorine bonds in Carbon tetrafluoride(CF4), for example, are polarised toward the more electronegative carbon, and because both bonds have the same size, their sum is zero due to the CF4 molecule’s bond dipole moment, and the CF4 molecule is classified as a nonpolar molecule.

The molecule of Carbon tetrafluoride (with tetrahedral geometry) is tilted at 109 degrees and has a difference in electronegativity values between fluorine and carbon atoms, with fluorine’s pull being roughly equal to carbon’s. As a result, it has no dipole moment indefinitely. The CF4 molecule has no dipole moment due to an equal charge distribution of negative and positive charges.

How to draw the CF4 Lewis Structure:

The centre atom is carbon, which is bordered on all sides by four fluorine atoms. Carbon has four outermost valence electrons, indicating that it possesses four electrons in its outermost shell, whereas fluorine have seven. To complete the octet of the carbon atom, a carbon core atom requires four electrons. If you’re interested in learning more about the carbon octet rule, please see in our previous post.

Four fluorine atoms establish covalent connections with the carbon atom as a result, leaving the carbon atom without any lone pairs. There are no lone pairs on the carbon core atom that resist the bond pairs of the four C-F. According to VSEPR theory, no electronic repulsion leads the CF4 molecule to take on a tetrahedral shape like CH3Cl, CH3F, or CH2Cl2.

The CF4 molecule’s C-F bonds are arranged in a symmetrical order around the tetrahedral geometry, giving rise to the tetrahedral shape. The CF4 molecule has a tetrahedral geometry because there is no electrical repulsion between them.

Electronegative difference calculation CF4 molecule:

Carbon has an electronegativity of 2.55, while fluorine has an electronegativity of 2.22 in the CF4 molecule. The difference in electronegativity can be estimated using the method below.

The electronegative value difference between carbon and fluorine

Electronegativity value of fluorine= 2.22

Electronegativity value of carbon= 2.55

Difference of electronegativity value between fluorine and carbon= 2.55 – 2.22 =0.33

Electronegativity difference between C-F bond calculation of CF4 molecule

Due to the difference in electronegativity value of less than 0.5, the C-F bond of the CF4 molecule becomes nonpolar. Because of this difference in electronegativity, the CF4 molecule’s C-F bond becomes nonpolar. The electronegativity of an atom is the strength with which it may attract bound electron pairs to its side.

As a result, the C-F bond’s dipole moment is virtually negligible, and all C-F bonds’ dipoles are centered around the tetrahedral geometry. The CF4 molecule’s total dipole moment is predicted to be 0 D. It has a partial negative charge for carbon atoms and a partial positive charge for fluorine atoms.

The electron dot structure of the CF4 molecule is also known as the CF4 Lewis Structure. It determines the number of outermost valence electrons as well as the electrons engaged in the CF4 molecule’s bond formation. The outermost valence electrons of the CF4 molecule must be understood while considering the Lewis structure of the molecule.

The carbon atom is the middle element in molecular geometry, with four electrons in its outermost valence electron shell, whereas the fluorine atom has seven electrons in its outermost valence electron shell.

The CF4 molecule has a total of 32 valence electrons as a result of the foregoing reasoning. With the core carbon atom, the four fluorine atoms form covalent bonds, leaving the carbon atom with no lone pairs on it.

The tetrahedral geometry and structure of the molecules are similar to that of the chloroform (CH3Cl) molecule because no lone pairs of central carbon atoms create interaction with C-F bond pairs. The bond angle of the Cl-C-F bond is approximately 109 degrees. The C-F bond has a 108-minute bond length (picometer).

To sketch the CF4 Lewis structure by following these instructions:

Step-1: Adding valence electron on the carbon atom

Calculate the total number of electrons in the CF4 molecule’s outermost valence shell. The first step is to determine how many electrons are in the CF4 Lewis Structure’s outermost valence shell. An electron in an atom’s outermost shell is known as a valence electron. It is represented by dots in the CF4 Lewis Structure diagram. The CF4 molecule’s core carbon atom can be represented as follows:

To calculate the valence electron of each atom in CF4, look for its periodic group. The carbon and fluorine families, which are the first and 14th groups in the periodic table, are both made up of carbon and fluorine atoms. In their outermost shells, carbon and fluorine have four and seven valence electrons, respectively.

How to draw a CF4 Lewis Structure?

Because carbon and fluorine are members of the periodic table’s carbon and halogen family groups, their valence electrons are four and seven, respectively.

Total outermost valence shell electron of carbon atom in CF4= 4

Total outermost valence shell electron of fluorine atom in CF4= 1

The CF4 molecule has one central carbon atom and four fluorine atoms. Then the total outermost valence shell electrons can be calculated as follows

∴ Total outermost valence shell electrons available for CF4 Lewis Structure( dot structure) = 4 +4*7= 32 valence electrons  in CF4    

calculation of total valence electron of CF4 molecule

Choose the atom with the least electronegative charge and insert it in the molecular geometry of CF4. We’ll choose the least electronegative atom in the CF4 molecule to place in the centre of the CF4 Lewis structure diagram in this phase. The electronegativity value in periodic groups grows from left to right in the periodic table and drops from top to bottom.

Step-2: Adding valence electron on fluorine atom in the CF4 molecule

As a result, fluorine is the first atom in the periodic table’s halogen family group. Carbon is the first member of the carbon family. The electronegative value of a fluorine atom is lower than that of a carbon atom. Furthermore, fluorine has a one-electron limit since carbon is the most electronegative element in the CF4 molecule.

How to draw a CF4 Lewis Structure?

In a CF4 Lewis Structure diagram, the carbon atom can be the centre atom. As a result, central carbon in the CF4 Lewis Structure, with all four fluorines arranged around the tetrahedral geometry.

Step-3: Combining step1 and step2 to get step3 for CF4 dot structure

Connect the exterior and core atoms of the CF4 molecule with four single bonds (C-F). In this stage, use four single bonds to connect all four fluorine atoms on the outside of the CF4 molecule to the central carbon atom in the middle.

Count how many electrons from the outermost valence shell have been used in the CF4 structure so far. Each C-F bond carries two electrons because each carbon atom is connected to four fluorine atoms by four C-F bonds. Bond pairings are what they’re called.

So, out of the total of 32 valence electrons available for the CF4 Lewis Structure, we used 8 for the CF4 molecule’s four single (C-F) bonds. The CF4 molecule has lost all of its valence electrons. We don’t need to put the extra electron in the molecular geometry of CF4.

Place the valence electrons in the C-F bond pairs starting with the core carbon and three fluorine atoms in the CF4 molecule. In the CF4 Lewis Structure diagram, we always begin by introducing valence electrons from the central carbon atom. As a result, wrap around the central carbon atom’s bond pair valence electrons first.

Carbon requires 8 electrons in its outermost valence shell to complete its octet. Carbon already shares eight electrons thanks to the four single bonds.

We’ve positioned eight electrons around the central carbon atom, which is represented by a dot, in the CF4 molecular structure above. The carbon atom completes its octet stability in the CF4 molecule because it possesses 8 electrons in its outermost valence shell.

How to draw a CF4 Lewis Structure?

Count how many outermost valence shell electrons have been used so far using the CF4 Lewis Structure. Eight electrons are shown as dots in the CF4 chemical structure, whereas four single bonds each contain two electrons. The outermost valence shell electrons of the CF4 molecule are 4 + 4= 8 as a result of the calculation.

So far, we’ve used eight of the CF4 Lewis structure’s total eight outermost valence shell electrons.

Complete the middle carbon atom octet and, if necessary, apply a covalent bond. The core atom in the CF4 Lewis Structure is carbon, which is bonded to the fluorine atoms by four single bonds (C-F). With the help of four single bonds, it already shares eight electrons. As a result, carbon follows the octet rule and has eight electrons surrounding it.

How to calculate the formal charge on the carbon atom in CF4 Lewis Structure?

The formal charge on the CF4 molecule’s carbon central atom often corresponds to the actual charge on that carbon central atom. In the following computation, the formal charge will be calculated on the central carbon atom of the CF4 Lewis dot structure.

To calculate the formal charge on the central carbon atom of CF4 molecule by using the following formula:

The formal charge on the carbon atom of CF4 molecule= (V. E(C)– L.E(C) – 1/2(B.E))

V.E (C) = Valence electron in carbon atom of CF4 molecule

L.E(C) = Lone pairs of an electron in the carbon atom of the CF4 molecule.

B.E = Bond pair electron in C atom of CF4 molecule

calculation of formal charge on carbon atom in CF4 molecule

The carbon core atom (four single bonds connected to fluorines) of the CF4 molecule has four valence electrons, zero lone pair electrons, and eight bonding electrons. Put these values for the carbon atom in the formula above.

Formal charge on carbon atom of CF4 molecule = (4- 0-(8/2)) =0

In the Lewis structure of CFvv4, the formal charge on the central carbon atom is zero.

Summary:

In this post, we discussed the method to construct CF4 Lewis Structure. Need to remember that, if you follow the above-said method, you can construct molecular dot structure very easily.

What is CF4 Lewis Structure?

CF4 Lewis structure is dot representation

What is the formal charge on CF4 Lewis Structure?

Zero charge on the CF4 molecular structure

The polarity of the molecules

Polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:

Information on CF4

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar