The chlorine pentafluoride chemical formula is ClF5. Drawing ClF5 Lewis Structure is very easy to by using the following method. Here in this post, we described step by step method to construct ClF5 Lewis Structure. The chlorine and fluorine elements come as the member of the halogen family group from the periodic table. The valence electrons in chlorine and fluorine are seven. The branch of halogen chemistry is used to make chemicals reagents for fluorination reactions.
Key Points To Consider When Drawing The ClF5 Electron Dot Structure
A three-step approach for drawing the ClF5 Lewis structure can be used. The first step is to sketch the Lewis structure of the ClF5 molecule, to add valence electrons around the chlorine atom; the second step is to add valence electrons to the five fluorine atoms, and the final step is to combine the step1 and step2 to get the ClF5 Lewis Structure.
The ClF5 Lewis structure is a diagram that illustrates the number of valence electrons and bond electron pairs in the ClF5 molecule. The geometry of the ClF5 molecule can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory), which states that molecules will choose the ClF5 geometrical shape in which the electrons have from one another.
Finally, you must add their bond polarities to compute the strength of the five Cl-F bonds (dipole moment properties of the ClF5 molecule). The chlorine-fluorine bonds in chlorine pentafluoride(ClF5), for example, are polarised toward the more electronegative fluorine in ClF5 molecule, and because both bonds have the same size and are located around five fluorine terminals of the square pyramidal with one lone pair (in total two-electrons) on the chlorine atom, their sum of dipole moment is nonzero due to the ClF5 molecule’s bond dipole moment and more electron polarity to the fluorine atoms. Because each five Cl-F bonds polarity not canceled each other in the ClF5 molecule. The Penta fluoro chlorine or chlorine pentafluoride(ClF5) molecule is classified as a polar molecule.
The molecule of chlorine pentafluoride (with square pyramidal molecular geometry) is tilted, the bond angles between chlorine and fluorine are 90 degrees. It has a difference in electronegativity values between chlorine and fluorine atoms, with central chlorine’s pull being less than terminal fluorine’s in the ClF5 molecule. But they not canceled each other due to the asymmetrical molecular geometry of the ClF5 molecule.
As a result, it has the nonzero dipole moment. The ClF5 molecule has a nonzero dipole moment due to an unequal charge distribution of negative and positive charges. But both these atoms fall on the halogen family group. The fluorine atom is a more electronegative value than chlorine in the ClF5 molecule. The ClF5 molecule has the net dipole moment.
Molecules can be classified as polar or nonpolar. The molecule polar behaves in a different manner as compared to nonpolar.
Overview: ClF5 Lewis Structure
The central atom is chlorine, which is bordered on five terminals with fluorine atoms( in square pyramidal), and one lone pair on the central in the square pyramidal geometry. Chlorine has seven outermost valence electrons, indicating that it possesses seven electrons in its outermost shell, whereas fluorine also has seven valence electrons in its outermost shell. To complete the octet of the chlorine and fluorine atoms requires one valence electron on each of their outermost shell.
Five fluorine atoms establish covalent connections with the central chlorine atom as a result, leaving the chlorine atom with two lone pairs. There are two lone pairs of electrons on the chlorine central atom that resists the bond pairs of the five Cl-F. According to VSEPR theory, the Cl-F bond pairs polarity lead the ClF5 molecule to take on the square pyramidal geometry structure.
The ClF5 molecule’s five Cl-F bonds are arranged in unsymmetrical polarity order around the square pyramidal molecular geometry, giving rise to the ClF5 molecular shape. The ClF5 molecule has a square pyramidal molecular geometry because there is electrical repulsion between the lone pairs of electrons in fluorine and five bond pairs(Cl-F) of the ClF5 molecule.
Lewis structure of ClF5 has dot electron representative structure. Valence electrons of atoms undergo orbitals mixing in the chemical reactions, gives new types of molecular species. The molecule is nothing but a bundle of valence electrons from the atoms. But it is converted to bond pairs and lone pairs in the molecular structure.
Electronegative value Difference Calculation of ClF5 Molecule:
Chlorine and Fluorine Electronegative difference in ClF5:
The chlorine atom has an electronegativity of 3.16, while fluorine has an electronegativity of 3.98 in the ClF5 molecule. The difference in electronegativity of chlorine and fluorine can be estimated using the method below.
The electronegative value difference between chlorine and fluorine in ClF5 molecule
Electronegativity value of chlorine = 3.16
Electronegativity value of fluorine= 3.98
Difference of electronegativity value between chlorine and fluorine in ClF5 molecule = 3.98 – 3.16=0.82
Electronegativity difference between Cl-F bond calculation of ClF5 molecule
The electronegative difference between chlorine and fluorine is greater than 0.5. This indicated the bond polarity moves near to polar nature. Cl-F bond polarity in the ClF5 molecule is polar.
Because of this difference in electronegativity of chlorine and fluorine atoms, the ClF5 molecule’s Cl-F bond becomes polar. The total net dipole moment of the ClF5 molecule is nonzero due to the no cancellation of the bond dipole moment in the square pyramidal geometry. The electronegativity of an atom is the strength with which it may attract bound electron pairs to its side. The polarity of ClF5 is discussed in our previous post.
As a result, the Cl-F bond’s dipole moment is high due to the polarization of the bonds and one lone pair of electrons on chlorine, and all Cl-F bonds’ dipoles are arranged in the asymmetrical ClF5 molecular geometry. The ClF5 molecule has a total dipole moment.
The electron dot structure of the ClF5 molecule is also known as the ClF5 Lewis structure. It determines the number of outermost valence electrons as well as the electrons engaged in the ClF5 molecule’s bond formation. The outermost valence electrons of the ClF5 molecule must be understood while considering the Lewis structure of the molecule.
The chlorine atom is the middle element in ClF5 molecular geometry, with seven electrons in its outermost valence electron shell, whereas the fluorine atom has seven electrons in its outermost valence electron shell. The fluorine atom has seven valence electrons.
The ClF5 has a total of 42 valence electrons as a result of the foregoing above-said reasoning. With the core central chlorine atom, the five terminals with five fluorine atoms form covalent bonds, leaving the chlorine atom with one lone pair in the middle of square pyramidal geometry.
Because lone pair on the terminal fluorine atom creates interaction with Cl-F bond pairs(but it is negligible). The bond angle of the F-Cl-F bond in the square pyramidal molecular geometry is approximately 90 degrees. This angle is greater than the ClF3 molecule bond angle. The Cl-F bond length is 176 pm(picometer).
To sketch the ClF5 Lewis structure by following these instructions:
Step-1: ClF5 Lewis dot Structure by counting valence electrons on the chlorine atom
To calculate the valence electron of each atom in ClF5, look for its periodic group from the periodic table. The halogen group families, which are the 17th group in the periodic table, are both made up of chlorine and fluorine atoms. In their outermost shells, fluorine and chlorine have seven valence electrons.
Calculate the total number of valence electrons in the ClF5 molecule’s outermost valence shell. The first step is to determine how many electrons are in the ClF5 Lewis structure’s outermost valence shell. An electron in an atom’s outermost shell is known as a valence electron. It is represented by dots in the ClF5 Lewis diagram. The ClF5 molecule’s core chlorine atom can be represented as follows:
Total outermost valence shell electron of chlorine atom in ClF5= 7
Total outermost valence shell electron of fluorine atom in ClF5= 7
The ClF5 molecule has one central chlorine and five fluorine atoms. Then the total outermost valence shell electrons can be calculated as follows
∴ Total outermost valence shell electrons available for ClF5 Lewis structure( dot structure) = 7+5*7=42 valence electrons in ClF5.
calculation of total valence electron of ClF5 molecule
Choose the atom with the least electronegative value atom and insert it in the center of the molecular geometry of ClF5. We’ll choose the least electronegative value atom in the ClF5 molecule to place in the center of the ClF5 Lewis structure diagram in this phase. The electronegativity value in periodic groups grows from left to right in the periodic table and drops from top to bottom.
The first step is to put seven valence electrons around the chlorine atom as given in the figure.
Step-2: Lewis Structure of ClF5 for counting valence electrons around the terminal fluorine atoms
As a result, chlorine is the second atom in the periodic table’s halogen family group. Fluorine is the first member of the halogen family. The electronegative value of the fluorine atom is higher than that of the chlorine atom in the ClF5 molecule. Furthermore, fluorine has a seven electrons limit since chlorine is the less electronegative element in the ClF5 molecule.
In the ClF5 Lewis structure diagram, the chlorine atom can be the center atom of the molecule. As a result, central chlorine in the ClF5 Lewis structure, with all five fluorine atoms arranged in square pyramidal geometry.
Add valence electrons around the fluorine atom, as given in the figure.
Step-3: Lewis dot Structure for ClF5 generated from step-1 and step-2
Connect the exterior and core central atom of the ClF5 molecule with five single Cl-F bonds. In this stage, use five fluorine atoms on the outside of the ClF5 molecule to the central chlorine atom in the middle.
Count how many electrons from the outermost valence shell have been used in the ClF5 structure so far. Each Cl-F bond carries two electrons because each chlorine atom is connected to five fluorine atoms by five Cl-F bonds. Bond pairings of Cl-F are what they’re called.
So, out of the total of 42 valence electrons available for the ClF5 Lewis structure, we used 10 electrons for the ClF5 molecule’s five Cl-F bonds. The ClF5 molecule has one lone pair of electrons in the central chlorine atom.
Place the valence electrons in the Cl-F bond pairs starting with the core chlorine, five fluorine atoms in the ClF5 molecule. In the ClF5 Lewis structure diagram, we always begin by introducing valence electrons from the central chlorine atom(in step1). As a result, wrap around the central chlorine atom’s bond pair valence electrons first (see figure for step1).
The chlorine atom in the molecule gets only ten electrons around its molecular structure. This central chlorine atom is extra octet stable. But it has one lone pair. Chlorine(Br2) is blue gas in nature. when chlorine acted as chlorinating agent, it is used as a chemical reagent. But ClF5 is used as a fluorinating agent in organic chemistry.
Chlorine requires 12 electrons in its outermost valence shell to complete the molecular extra octet stability, 10 electrons bond pairs in five Cl-F bonds. Then lone pairs of electrons on the fluorine atoms of the ClF5 molecule are placed in a square pyramidal geometry. Chlorine already shares ten electrons to the five Cl-F bonds. Then place the valence electron in the fluorine atoms, it placed around seven electrons on each atom(step-2). 30 valence electrons placed around fluorine atoms as lone pairs of electrons.
We’ve positioned 30 electrons around the terminal fluorine atoms(step-3), which is represented by a dot, in the ClF5 molecular structure above. The chlorine atom completes its molecular extra octet stability in the ClF5 molecule because it possesses ten electrons in its (five Cl-F) bond pairs with five fluorine in the outermost valence shell.
Count how many outermost valence shell electrons have been used so far using the ClF5 Lewis structure. Five electron bond pairs are shown as dots in the ClF5 chemical structure, whereas five single bonds each contain two electrons. The outermost valence shell electrons of the ClF5 molecule(bond pairs) are ten as a result of the calculation.
So far, we’ve used 42 of the ClF5 Lewis structure’s total 42 outermost valence shell electrons. One lone pair of electrons on the chlorine atom in the square pyramidal of the ClF5 molecule.
Complete the middle chlorine atom stability and, if necessary, apply a covalent bond. The central chlorine atom undergoes extra octet stability(due to one lone pair of electrons).
The core atom in the ClF5 Lewis structure is chlorine, which is bonded to the five fluorine atoms by single bonds (five Cl-F). With the help of five single bonds, it already shares ten electrons. As a result, the chlorine follows the extra octet rule and has ten electrons surrounding it on the five terminals of the ClF5 molecule’s square pyramidal geometry.
How to calculate the formal charge on chlorine and fluorine atoms in ClF5 Lewis Structure?
Calculating formal charge on the chlorine of ClF5 molecule:
The formal charge on the ClF5 molecule’s chlorine central atom often corresponds to the actual charge on that chlorine central atom. In the following computation, the formal charge will be calculated on the central chlorine atom of the ClF5 Lewis dot structure.
To calculate the formal charge on the central chlorine atom of the ClF5 molecule by using the following formula:
The formal charge on the chlorine atom of ClF5 molecule= (V. E(Br)– L.E(Br) – 1/2(B.E))
V.E (Br) = Valence electron in a chlorine atom of ClF5 molecule
L.E(Br) = Lone pairs of an electron in the chlorine atom of the ClF5 molecule.
B.E = Bond pair electron in Br atom of ClF5 molecule
calculation of formal charge on chlorine atom in ClF5 molecule
The chlorine core atom (five single bonds connected to five fluorine atoms ) of the ClF5 molecule has seven valence electrons, one lone pair of electrons(two electrons), and ten bonding pairing valence electrons. Put these values for the chlorine atom in the formula above.
Formal charge on chlorine atom of ClF5 molecule = (7- 2-(10/2)) =0
In the Lewis structure of ClF5, the formal charge on the central chlorine atom is zero.
Calculating formal charge on the fluorine of ClF5 molecule:
The formal charge on the ClF5 molecule’s fluorine terminal atom often corresponds to the actual charge on that fluorine terminal atom. In the following computation, the formal charge will be calculated on the terminal fluorine atom of the ClF5 Lewis dot structure.
To calculate the formal charge on the terminal fluorine atom of the ClF5 molecule by using the following formula:
The formal charge on the fluorine atom of ClF5 molecule= (V. E(F)– L.E(F) – 1/2(B.E))
V.E (F) = Valence electron in a fluorine atom of ClF5 molecule
L.E(F) = Lone pairs of an electron in the fluorine atom of the ClF5 molecule.
B.E = Bond pair electron in F atom of ClF5 molecule
calculation of formal charge on fluorine atom in ClF5 molecule
The fluorine terminal atom of the ClF5 molecule has seven valence electrons, three lone pairs of electrons(six electrons), and two bonding pairing valence electrons. Put these values for the fluorine atom in the formula above.
Formal charge on fluorine atom of ClF5 molecule = (7- 6-(2/2)) =0
In the Lewis structure of ClF5, the formal charge on the terminal fluorine atom is zero.
Summary:
In this post, we discussed the method to construct the ClF5 Lewis structure. First, the valence electrons are placed around the chlorine atom. Second, place the valence electron on the fluorine atoms. Finally, when we combined the first and second steps. It gives ClF5 Lewis structure. Need to remember that, if you follow the above-said method, you can construct molecular dot structure very easily.
What is the ClF5 Lewis structure?
ClF5 Lewis structure is dot representation
What is the formal charge on the ClF5 Lewis structure?
Zero charges on the ClF5 molecular structure
The polarity of the molecules
The polarity of the molecules are listed as follows
- Polarity of BeCl2
- Polarity of SF4
- Polarity of CH2Cl2
- Polarity of NH3
- Polarity of XeF4
- Polarity of BF3
- Polarity of NH4+
- Polarity of CHCl3
- Polarity of BrF3
- Polarity of BrF5
- Polarity of SO3
- Polarity of SCl2
- Polarity of PCl3
- Polarity of H2S
- polarity of CS2
- Polarity of NO2+
- Polarity of HBr
- Polarity of HCl
- Polarity of CH3F
- Polarity of SO2
- Polarity of CH4
Lewis Structure and Molecular Geometry
Lewis structure and molecular geometry of molecules are listed below
- CH4 Lewis structure and CH4 Molecular geometry
- BeCl2 Lewis Structure and BeCl2 Molecular geometry
- SF4 Lewis Structure and SF4 Molecular geometry
- CH2Cl2 Lewis Structure and CH2Cl2 Molecular geometry
- NH3 Lewis Structure and NH3 Molecular geometry
- XeF4 Lewis Structure and XeF4 Molecular geometry
- BF3 Lewis Structure and BF3 Molecular geometry
- NH4+ Lewis Structure and NH4+ Molecular geometry
- CHCl3 Lewis Structure and CHCl3 Molecular geometry
- BrF3 Lewis Structure and BrF3 Molecular geometry
- BrF5 Lewis Structure and BrF5 Molecular geometry
- SO3 Lewis Structure and SO3 Molecular geometry
- SCl2 Lewis structure and SCl2 Molecular Geometry
- PCl3 Lewis structure and PCl3 Molecular Geometry
- H2S Lewis structure and H2S Molecular Geometry
- NO2+ Lewis structure and NO2+ Molecular Geometry
- HBr Lewis structure and HBr Molecular Geometry
- CS2 Lewis structure and CS2 Molecular Geometry
- CH3F Lewis structure and CH3F Molecular Geometry
- SO2 Lewis structure and SO2 Molecular Geometry
- HCl Lewis structure and HCl Molecular Geometry
- HF Lewis structure and HF Molecular Geometry
- HI Lewis structure and HI Molecular Geometry
- CO2 Lewis structure and CO2 Molecular Geometry
- SF2 Lewis structure and SF2 Molecular Geometry
- SBr2 Lewis structure and SBr2 Molecular Geometry
- PF3 Lewis structure and PF3 Molecular Geometry
- PBr3 Lewis structure and PBr3 Molecular Geometry
- CH3Cl Lewis structure and CH3Cl Molecular Geometry
- CH3Br Lewis structure and CH3Br Molecular Geometry
- CH3I Lewis structure and CH3I Molecular Geometry
- SCl4 Lewis structure and SCl4 Molecular Geometry
- SBr4 Lewis structure and SBr4 Molecular Geometry
- CH2F2 Lewis structure and CH2F2 Molecular Geometry
- CH2Br2 Lewis structure and CH2Br2 Molecular Geometry
- XeCl4 Lewis structure and XeCl4 Molecular Geometry
- BCl3 Lewis structure and BCl3 Molecular Geometry
- BBr3 Lewis structure and BBr3 Molecular Geometry
- CHF3 Lewis structure and CHF3 Molecular Geometry
- CHBr3 Lewis structure and CHBr3 Molecular Geometry
- ClF3 Lewis structure and ClF3 Molecular Geometry
- IF3 Lewis structure and IF3 Molecular Geometry
- ICl3 Lewis structure and ICl3 Molecular Geometry