Best overview: Is NO2+ Polar or Nonpolar

Nitrogen and oxygen base compounds are very different in nature. Nitronium ion has the chemical formula NO2+. All atoms belong to the non-metal family groups in the periodic table and possess a high electronegativity value. Students used to ask “Is NO2+ polar or nonpolar?”, “NO2+ Lewis Structure”, “NO2+ molecular geometry”, “NO2+ bond angle”, and “NO2+ polarity”. In this blog post, we are going to discuss the polarity of NO2+ ions in a detailed manner.

NO2+ is commonly appearing at ordinary temperatures and pressures, it exists as a gas with stable salt form. NO2+ contains one nitrogen atom, cation resonate on nitrogen, and two oxygen atoms. Nitronium ion (NO2+) is corrosive to biological tissue and metals, and it can induce a corrosive effect on metal, nitrate the cotton, and other organic materials. The nitrogen atom stays the center of the molecule ion and the remaining two oxygen atoms. “Is NO2+ polar or nonpolar?”, to answer this question, we need a detailed analysis of the polarity of the NO2+ molecule.

Because of the linear structural form of nitronium ion (NO2+). 0xygen has atomic number 8 in the modern periodic table and six outermost valence shell electrons. It comes under the oxygen family group. Similarly, nitrogen has atomic numbers 7 and five outermost valence shell electrons. It contains a +1 charge on the nitrogen dioxide molecular species.

NO2+ molecule ion species are formed by elements of the nitrogen and oxygen family group in the periodic table. When NO2+ ion is exposed to air, it absorbs water quickly and produces white vapors that have a distinct odor and are toxic to breathe. nitronium ion (NO2+) can generate nitric acid when it reacts with water and undergoes hydrolysis.

Is NO2+ polar or nonpolar, then? nitronium (NO2+) is nonpolar due to its linear geometrical shape caused by the presence of the two oxygen atoms, opposite to each other. Second, the difference in electronegativity between nitrogen and oxygen atoms causes the N-O bonds to become polar, causing the entire molecule ion to become nonpolar as well, resulting in a net dipole moment of the NO2+ molecule is 0 D.

Best overview: Is NO2+ Polar or Nonpolar

Preparation of NO2+ ion

Nitronium ion(NO2+) is a bright yellow color liquid with a strong intense odor. It is created primarily through the mixing of sulphuric and nitric acid. It is the homogeneous reaction, mixing of concentrated sulfuric acid and nitric acid. Initially, This gives hydrogen sulfate and nitronium ion(NO2+). A nitronium ion is known as an electrophile. This first reaction step is exothermic in nature.

The chemical equation of mixing of concentrated sulfuric and nitric acid, exothermic reaction is shown below.

H2SO4 + HNO3 â†’ HSO−4 + NO+2 + H2O

Preparation of nitronium ion(NO2+)

NO2+ Molar Mass Calculation

NO2+ has a molecular mass of 46.005 g·mol−1, which may be computed as follows.

Mol mass of NO2+ = 1 * 14 (atomic mass of N) + 2 * 16 (atomic mass of O) = 46.005 g·mol−1.

NO2+ molar mass calculation

The chemical composition of the nitrogen dioxide ion(NO2+) molecule is 2 oxygen atoms and a positive charge resonates on the nitrogen atom in the middle.

NO2+ Lewis Structure: Is NO2+ polar or nonpolar?

The core atom is nitrogen, which is flanked by two oxygen atoms. nitrogen contains five outermost valence electrons, which means it contains five electrons in its outermost shell, whereas oxygen has six outermost electrons. An oxygen atom is required two electrons to complete the octet of oxygen atoms. If you want to know about the octet rule, please see in our previous post.

As a result of this, both two oxygen atoms form covalent bonds with the nitrogen atom, leaving the nitrogen atom with a positive charge. The double bond pairs of N–O are linear in nature by the positive charge on the nitrogen atom. According to VSEPR theory, a positive charge resonating on nitrogen causes the molecule’s shape to linear.

The positive charge resonating on NO2+ ion both two N-O bonds linear, resulting in the linear form of the NO2+ molecule. Because they generate electrical repulsion among the NO2+ molecule, Resonating positive ions on NO2+ have shaped NO2+ in a linear structure.

Electronegative difference calculation NO2+:

When it comes to the electronegativity value of the NO2+ molecule, Oxygen has an electronegativity of 3.44, while nitrogen has an electronegativity of 3.04. The electronegativity difference of the N-O bond in NO2+ molecule can be calculated by the following method.

Electronegativity value of oxygen = 3.44

Electronegativity value of nitrogen = 3.04

Difference of electronegativity value between nitrogen and oxygen = 3.44- 3.04=0.40

Electronegativity difference calculation of NO2+ molecule

The N-O bond of the NO2+ molecule becomes nonpolar in nature due to this difference in electronegativity value. The power with which an atom can attract bound electron pairs towards its side is known as the electronegativity of the atom.

As a result of this, the dipole moment of the N-O bond is near zero, and the dipoles of both N-O bonds are negated due to the linear structure of the NO2+ molecule. The total dipole moment of the NO2+ molecule is calculated to be 0 D. Nitrogen atoms receive a positive charge on it, while oxygen atoms receive a partial negative charge on it.

NO2+ molecule’s electron dot structure is also known as NO2+ Lewis structure. It determines the number of outermost valence electrons and the electrons involved in the formation of the NO2+ molecule’s bonds. When discussing the Lewis structure of the NO2+ molecule, it is necessary to understand the outermost valence electrons of NO2+ ion.

Nitrogen is the middle element of the molecule, with five electrons in its outermost valence electron shell, while the oxygen atom is the outermost valence electron shell, with six electrons and two electrons missing in the shell to complete its octet.

As a result of this above explanation, the NO2+ molecule contains a total of 16 valence electrons. The two oxygen atoms establish covalent connections with the nitrogen atom, leaving the nitrogen atom with the resonating positive charge on it.

The resonating positive charge of nitrogen atoms causes repulsion and stability with N-O bond pairs, causing the N-O bonds to linear structure and the shape of the molecules resonating between nitrogen and oxygen. The 0-N-O bond has a bond angle of roughly 180 degrees. N-O bond has a bond length of 115 pm (picometer).

To sketch the NO2+ Lewis structure by following these instructions:

Step-1: Determine the total number of outermost valence shell electrons in the NO2+ molecule. The first step is to figure out how many outermost valence shell electrons there are in the NO2+ Lewis structure. A valence electron is one of an atom’s outermost shell electrons. In the Lewis diagram, it is represented by dots. The central nitrogen atom of the NO2+ molecule can be represented as follows

Look for the periodic group of each atom in NO2+ to determine its valence electron. Nitrogen and oxygen are both members of the nitrogen and oxygen family, which is the 15th and 16th groups in the periodic table respectively. Nitrogen and oxygen have five and six valence electrons in their outermost shell respectively.

Because nitrogen and oxygen belong to the nitrogen and oxygen family group in the periodic table, their valence electrons are five and six respectively.

Total outermost valence shell electron of oxygen atom in NO2+ = 6

Total outermost valence shell electron of the nitrogen atom in NO2+= 5

The NO2+ molecule has one central nitrogen atom and two oxygen atoms. Then the total outermost valence shell electrons can be calculated as follows

∴ Total outermost valence shell electrons available for NO2+ Lewis structure( dot structure) = 6 + 5*2 = 16 valence electrons  in NO2+    

calculation of total valence electron of NO2+ molecule

Step-2: Locate the atom with the least electronegative charge and place it in the center of the NO2+ molecular geometry. In this phase, we’ll select the least electronegative atom in the NO2+ molecule to place in the Lewis structure diagram’s center. In the periodic table, the electronegativity value increases in order from left to right and decreases in order from top to bottom in periodic groups.

As a result, Oxygen is the first atom in the oxygen family group in the periodic table. The nitrogen atom comes as the first element in the nitrogen family group. A nitrogen atom has a lower electronegative value than an oxygen atom. Furthermore, because oxygen is the most electronegative element in NO2+ molecule, it can never be the central atom in a NO2+ Lewis structure diagram. As a result of this, place nitrogen at the center of the NO2+ Lewis structure, with oxygen uniformly around the two terminals of linear NO2+ molecule.

Step-3: Use two double bonds (N-O) to connect the outside and core atoms in the NO2+ molecule. Connect all outside atoms (oxygen) to the core central atom (nitrogen) with two double bonds in this stage.

Count how many outermost valence shell electrons we’ve used so far in the NO2+ structure. Because each nitrogen atom is connected to an oxygen atom by two double (N-O) bonds, each connection contains four electrons. Those are called bond pairs of double bonds.

So, from the total of 16 valence electrons available for the NO2+ Lewis structure, we employed 8 electrons for two double (N-O) bonds in the NO2+ molecule. There are still 8 valence electrons left in the NO2+ molecule. Where do we need to place them in NO2+ molecular geometry?

Step-4: Starting with the outer two oxygen atoms in the NO2+ molecule, place the remaining valence electrons. We always start inserting valence electrons from the exterior oxygen atom first in the Lewis structure diagram. As a result, first, wrap around the leftover valence electrons on each oxygen atom.

To complete its octet, oxygen requires 8 electrons in its outermost valence shell. With the help of a double bond, each oxygen already shares four electrons. Put 4 electrons around each oxygen atom and you’re done with the oxygen atoms in NO2+ molecule.

In the NO2+ molecule structure above, we’ve put 8 electrons around the oxygen atoms, represented by a dot. As all oxygen atoms have 8 electrons in their outermost valence shell, each oxygen atom comfortably completes its octet stability in the NO2+ molecule.

Using the Lewis structure, count how many outermost valence shell electrons have been consumed so far. In the NO2+ molecular structure, 16 electrons are represented as dot structure, whereas two double bonds each contain 4 electrons. As an outcome of the calculation, the outermost valence shell electrons are 8 + 8= 16.

So far, we’ve used 16 of the total 16 outermost valence shell electrons available for the NO2+ Lewis structure. But now the question is, “How to fix the remaining four valences in nitrogen atom?”. We also have four valences in the central nitrogen atom to spare in the NO2+ molecule.

Step-5: Complete central nitrogen atom octet and use covalent bond if necessary. In the NO2+ Lewis structure, nitrogen is the central atom and it is connected with two double bonds (N-O) to the oxygen atoms. It means it already sharing 8 electrons with the help of 2 double bonds.

So, Nitrogen is obeying the rule of the octet with 8 electrons around it. Place the resonating positive charge around the nitrogen center atom, which is acting as an octet stabilization in this case.

Best overview: Is NO2+ Polar or Nonpolar

What are NO2+ electron and molecular geometry?

NO2+ has a linear molecular geometry and resonating electron geometry, according to the VSEPR theory. Because the core central atom, nitrogen, has two N-O bonds with the surrounding two oxygen atoms. In the same plane, the O-N-O bond forms a 180-degree angle. Because two oxygen atoms are in the same plane, they form a linear shape.

Above that plane, there is a positive charge on nitrogen. It maintains the linear-like form after connecting the resonating charges along with the NO2+ molecule form. The bond pair is located just opposite to central nitrogen atom in the linear geometry. The positive charge on the nitrogen atom resonating in the linear NO2+ molecule.

Because of the resonating positive charge, it gives linear electron geometry. But the NO2+ molecular geometry is a linear form in nature. It is the symmetrical geometry of the NO2+ molecule. That makes, NO2+ molecule is nonpolar.

How to find NO2+ molecular geometry

  1. Determine the number of lone pairs on the NO2+ Lewis structure’s core Nitrogen atom.
    We need to figure out how many lone pairs there are on the central nitrogen atom of the NO2+ Lewis structure because the lone pairs on nitrogen are primarily responsible for the linear NO2+ molecule geometry.

Use the formula below to find the lone pair on the NO2+ molecule’s center nitrogen atom.

L.P(N) = V.E(N) – N.A(N-O)/2


Lone pair on the central nitrogen atom = L.P(N )

The core central nitrogen atom’s valence electron = V.E(S)

Number of N-O bonds = N.A (N-O)

calculation for nitrogen atom lone pair in NO2+ molecule

In the case of NO2+, the center atom, nitrogen, has four outermost valence shell electrons(positive charge on it)and two oxygen atoms(double bond) connected to it.

As a result of this, L.P(S) = (4 – 4)/2=0

The lone pair on the center nitrogen atom of the NO2+ electron geometry structure is equal to zero. It means, the central nitrogen atom contains no lone pairs.

  1. Determine the number of NO2+ molecular hybridizations.
    How to find the hybridization of the NO2+ molecule?. Now we need to figure out what NO2+ molecular hybridization number is.

The formula of NO2+ molecular hybridization is as follows:

No. Hyb of NO2+ = N.A(N-O) + L.P(N)

No. Hy= the number of hybridizations of NO2+

Number of N-O bonds = N.A (N-O)

Lone pair on the central nitrogen atom = L.P(N)

Calculation for hybridization number for NO2+ molecule

Nitrogen, then, is a central atom with two oxygen atoms linked to it and no lone pairs in the NO2+ molecule. Then the number of hybridization of NO2+ (No. Hyb) can be calculated as follows

No. Hyb of NO2+= 2+0 =2

The number of hybridization for NO2+ molecule is two. one S orbital, and one p orbitals combine together to form the sp hybridization.

3. Use VSEPR theory to determine NO2+ molecular geometry shape

When the VSEPR theory is utilized to calculate the shape of the NO2+ molecule, the AXN approach is typically used.

The AXN notation is as follows:

The center nitrogen atom in the NO2+ molecule is denoted by the letter A.

The bound pairs (N-O) of electrons to the core atom are represented by X.

The lone pairs of electrons on the center nitrogen atom are denoted by the letter N.

Notation for NO2+ molecular geometry


We know nitrogen is the center atom with two bound (N-O) pairs of electrons and zero lone pairs. because of the NO2+ Lewis structure. NO2+ has the general molecular geometry formula AX2.

If the molecule has an AX2 generic formula, the molecular and electron geometry will be linear form, according to the VSEPR theory.

Name of MoleculeNitronium ion
Chemical molecular formulaNO2+
Molecular geometry of NO2+linear form
Electron geometry of NO2+Linear resonance structure
Hybridization of NO2+SP
Bond angle (O-N-O) and Bond order180º degree and 2
Total Valence electron for NO2+16
The formal charge of NO2+ on nitrogen+1

How to calculate the formal charge in NO2+ Lewis Structure?

The formal charge on the nitrogen central atom of the NO2+ molecule often represents the actual charge on that nitrogen central atom. The formal charge will be found on the central nitrogen atom of the NO2+ Lewis dot structure in the following calculation.

To calculate the formal charge on the central nitrogen atom of NO2+ molecule by using the following formula:

The formal charge on the nitrogen atom of NO2+molecule= (V. E(N)– L.E(N) – 1/2(B.E))

V.E (S) = Valence electron in nitrogen atom of NO2+ molecule

L.E(S) = Lone pairs of an electron in nitrogen atom of NO2+ molecule.

B.E = Bond pair electron in N atom of NO2+ molecule

calculation of formal charge on nitrogen atom in NO2+ molecule

We have 5 valence electrons, 0 lone pair electrons, and eight bonding electrons in the nitrogen central atom (two double bonds attached to oxygen) of the NO2+ molecule. Now put these value of the nitrogen atom in the above formula

Formal charge on nitrogen atom of NO2+ molecule = (5- 0-(8/2)) =+1

The formal charge on central nitrogen atom of NO2+ Lewis structure is +1.

Lewis structure of some other related post in this blog. See more detail by clicking on it, H2O, BeCl2, SF4, NH3, XeF4, BF3, BrF3, BrF5, SO3, SCl2, PCl3, H2S and CH2Cl2 molecules.

Dipole moment of NO2+

The dipole moment of the NO2+ molecule can assist us in determining the polarity’s strength. The polarity of any molecule is proportional to its dipole moment of bonds. Because the form of NO2+ is symmetric. The dipole moment of NO2+ does cancel each other as a result of this.

The dipole moment of NO2+ can be calculated as follows

D(N-O) = Q(N-O) * R(N-O)

D(N-O) = Dipole moment of N-O bond in NO2+ molecule

Q(N-O) = Charge distribution in N and O atom of NO2+ molecule

R(N-O)= Bond length of N-O bond in NO2+ molecule

Dipole moment calculation of NO2+ molecule

Net dipole moment of NO2+ molecule is 0 D.

Why is NO2+ polar molecule?

Due to the existence of resonating positive charge on the nitrogen atom, the nitronium ion (NO2+) molecule has a linear structural form. According to the VSEPR hypothesis, zero lone pairs on nitrogen and bond pairs stabilize with each other, causing the N-O bonds to form the linear molecular structure, resulting in a linear shaped NO2+ molecule.

The dipole moment of N-O bonds does cancel out as it does in symmetric NO2+ molecules. NO2+ has a dipole moment of 0 D across the entire molecule. The formation of a nonpolar molecule is caused by the geometrical structure and the difference in electronegativity value of atoms in the NO2+ molecule.

Because of the symmetric shape of the NO2+ molecule, the positive charge is dispersed uniformly resonating among the nitrogen and oxygen atoms, resulting in the formation of positive and negative poles resonating across the NO2+ molecule.

Best overview: Is NO2+ Polar or Nonpolar

Properties of NO2+

The properties of NO2+ molecule are listed below

  • NO2+ has a molar mass of 46.005 g/mol.
  • It is soluble in non-polar solvents but not polar solvents. Non-polar solvents include benzene, carbon tetrachloride, and others, while polar solvents include water, ammonia, and others.
  • NO2+ gas is extremely poisonous and can cause death in humans.
  • The nitrogen atom has a high electrical affinity due to its +1 charge and is utilized as an electrophoresis reagent in the titration process.

Uses of Nitronium ion (NO2+)

The uses of nitronium ion are listed below

  • In the nitration process, it acts as an electrophile.
  • NO2+ is used to make fertilizers like slurry, worm castings, and peat, among other things.
  • It’s used to make fluorinated nitrile (NO2F) and nitrile chloride, which are both commercially accessible salts (NO2Cl).
  • It loves electron in the reaction. It is called an electrophile reagent.

Conclusion

Because of its strong electron affinity, NO2+ (Nitronium ion) is a linear molecule and an electrophile in an organic reaction. Oxygen atoms are more electronegative than nitrogen atoms in the NO2+ ion. As a result, the NO bond is slightly polar, but the dipoles in opposite directions cancel each other out due to the symmetric linear geometry of NO2+, resulting in a net-zero dipole moment for the entire NO2+ molecule. As a result, NO2+ (Nitronium ion) is nonpolar.

It showed the sp molecular hybridization. The O-N-O bond angle of NO2+ is 180 degrees. The N-O bond length of NO2+ is 115 pm. It has a positive resonating charge on NO2+ molecules.

If you have any doubts and queries on this post, please leave comment. We will reply back as soon as possible.

FAQ on “Is NO2+ polar or nonpolar?”

What is the shape of NO2+?

The molecule NO2 is twisted, but when an electron is removed from it, making it NO2+, the molecule becomes linear due to the loss of a single electron. There is no repulsion between the two O atoms and the single electron on the centre atom in NO2+.

Is NO2+ polar or nonpolar atom closest to negative side?

NO2+ is a nonpolar molecule with the Oxygen atom closest to the negative side because Oxygen’s electronegativity value (3.44) is higher than Nitrogen’s (3.04), causing Oxygen atoms to attract an electron from the Nitrogen atom, resulting in a partial positive charge on the Nitrogen atom and a negative charge on the Oxygen atoms.

The polarity of the molecules

The polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:”Is NO2+ polar or nonpolar?”

Information on Nitronium ion

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar