How to draw KCl Lewis Structure?

The potassium chloride chemical formula is KCl. Drawing KCl Lewis Structure is very easy to by using the following method. Here in this post, we described step by step method to construct KCl Lewis Structure. The chlorine and potassium elements come as members of the halogen and alkaline metal family groups from the periodic table respectively. The valence electrons in chlorine and potassium are seven and one respectively. Potassium chloride is used to make chemical reagents for organic chemical reactions as a brominating agent in organic chemistry.

Key Points To Consider When Drawing The KCl Electron Dot Structure

A three-step approach for drawing the KCl Lewis structure can be used. The first step is to sketch the Lewis structure of the KCl molecule, to add valence electrons around the chlorine atom; the second step is to add valence electrons to the one potassium atom, and the final step is to combine the step1 and step2 to get the KCl Lewis Structure.

The KCl Lewis structure is a diagram that illustrates the number of valence electrons and bond electron pairs in the KCl molecule. The geometry of the KCl molecule can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory), which states that molecules will choose the KCl geometrical shape in which the electrons have from one another.

Finally, you must add their bond polarities to compute the strength of the one K+—Cl- single bonds (dipole moment properties of the KCl molecule). The potassium-chlorine ionic bonds in potassium chloride(KCl), for example, are polarised toward the more electronegative chlorine in KCl molecule, and because both bonds have the same size and are located around one potassium terminal of the linear structure with three lone pairs (in total eight electrons) on the chlorine atom as chloride ion(Cl-), their sum of dipole moment is nonzero due to the KCl molecule’s bond dipole moment and less electron polarity to the potassium atoms and become potassium ion. Because K+—-Cl- bonds polarity is not canceled in the KCl molecule due to the presence of four lone pairs of electrons in the linear structure. The potassium chloride(KCl) molecule is classified as a polar ionic molecular crystal.

How to draw KCl Lewis Structure?

The molecule of potassium chloride(linear-shaped molecular geometry) is tilted, the bond angles between chlorine (as chloride ion) and potassium (as potassium ion) are 180 degrees. It has a difference in electronegativity values between chlorine and potassium atoms, with central chlorine’s pull being higher than terminal potassium’s in the KCl ionic molecule. But they do not cancel each other due to the linear structure with four lone pairs in the molecular geometry of the KCl molecule.

As a result, it has the nonzero dipole moment. The KCl molecule has a nonzero dipole moment due to an unequal charge distribution of negative and positive charges. But both chlorine and potassium atoms fall on the halogen and alkaline metal family groups in the periodic table respectively. The chlorine atom is a more electronegative value than potassium in the KCl ionic molecule. The KCl molecule has the net dipole moment of non-zero value in the ground state energy level.

KCl molecule has one K+—–Cl- single bond. Its dipole moment in the ground state is totally different as compared with the excited state. If it absorbs light may be from visible or UV light. It undergoes pi to pi star and n to pi star transition from ground state energy level to excited state energy level. In the excited state energy level, the KCl ionic molecule shows a definite dipole moment. But it is very dynamic in nature.

Molecules can be classified as polar or nonpolar. The molecule polar behaves in a different manner as compared to nonpolar.

Overview: KCl Lewis Structure

The central atom is chlorine, which is bordered on two terminals with potassium atoms(linear structural geometry), and four lone pairs on the central chlorine atom in the linear molecular geometry. Chlorine has seven outermost valence electrons, indicating that it possesses seven electrons in its outermost shell, whereas potassium also has one valence electron in its outermost shell. To complete the octet of the chlorine atom requires one valence electron on each of their outermost shell.

One potassium atom establishes covalent connections with the central chlorine atom as a result, leaving the chlorine atom with three lone pairs. There are three lone pairs of electrons on the chlorine central atom that resists the bond pairs of the K+—-Cl- bond. According to VSEPR theory, the K+—-Cl- ionic bond pairs polarity lead the KCl molecule to take on the linear geometry structure.

The KCl molecule’s one K+—-Cl- bonds are arranged in asymmetrical polarity order around the linear molecular geometry, giving rise to the KCl molecular shape. The KCl molecule has a linear molecular geometry because there is an electrical repulsion between the lone pairs of electrons in chlorine and one single ionic bond pair(K-Cl) of the KCl molecule.

Lewis structure of KCl has dot electron representative structure. Valence electrons of atoms undergo orbitals mixing in the chemical reactions, giving new types of molecular species of KCl. The molecule is nothing but a bundle of valence electrons from the atoms. But it is converted to ionic bond pairs and lone pairs in the molecular structure.

Electronegative value Difference Calculation of KCl Molecule:

Chlorine and potassium Electronegative difference in KCl:

The chlorine atom has an electronegativity of 3.16, while potassium has an electronegativity of 0.82 in the KCl ionic molecule. The difference in electronegativity of chlorine and potassium can be estimated using the method below.

The electronegative value difference between chlorine and potassium in KCl molecule

Electronegativity value of chlorine= 3.16

Electronegativity value of potassium= 0.82

Difference of electronegativity value between chlorine and potassium in KCl molecule = 3.16 – 0.82 = 2.12

Electronegativity difference between K-Cl ionic bond calculation of KCl molecule

The electronegative difference between chlorine and potassium is greater than 0.5. This indicated the bond polarity moves near to polar nature. K-Cl ionic bond polarity in the KCl molecule is polar.

Because of this difference in electronegativity of chlorine and potassium atoms, the KCl molecule’s K+—Cl- bond becomes nonpolar. The total net dipole moment of the KCl molecule is nonzero due to the cancellation of the bond dipole moment in the linear geometry due to the presence of three lone pairs of electrons. The electronegativity of an atom is the strength with which it may attract bound electron pairs to its side.

As a result, the K-Cl bond’s dipole moment is higher due to the polarization of the bonds and four lone pairs of electrons on chlorine, and all K-Cl bonds’ dipoles are arranged in the asymmetrical KCl molecular geometry. The KCl molecule has a nonzero net dipole moment.

The electron dot structure of the KCl molecule is also known as the KCl Lewis structure. It determines the number of outermost valence electrons as well as the electrons engaged in the KCl ionic molecule’s bond formation. The outermost valence electrons of the KCl molecule must be understood while constructing the Lewis structure of the molecule.

The chlorine atom is the middle element in KCl molecular geometry, with seven electrons in its outermost valence electron shell, whereas the potassium atom has one electron in its outermost valence electron shell. The potassium atom has one valence electron.

The KCl has a total of 8 valence electrons as a result of the foregoing above-said reasoning. With the core central chlorine atom, the one terminals with one potassium atom form ionic bonds, leaving the chlorine atom with four lone pairs in the middle of linear geometry.

Because three lone pairs on the terminal chlorine atoms create interaction with K-Cl bond pairs(but it is negligible in the ground state of the KCl molecule). The bond angle of the K-Cl bond in the linear molecular geometry is approximately 180 degrees. This angle is greater than the CH4 molecule bond angle. The K-Cl bond length is 250 pm(picometer).

To sketch the KCl Lewis structure by following these instructions:

Step-1: KCl Lewis dot Structure by counting valence electrons on the chlorine atom

To calculate the valence electron of each atom in KCl, look for its periodic group from the periodic table. The halogen and alkaline metal group families, which are the 17th and 1st groups in the periodic table, are both made up of chlorine and potassium atoms respectively. In their outermost shells, potassium and chlorine have one and seven valence electrons respectively.

Calculate the total number of valence electrons in the KCl molecule’s outermost valence shell. The first step is to determine how many electrons are in the KCl Lewis structure’s outermost valence shell. An electron in an atom’s outermost shell is known as a valence electron. It is represented by dots in the KCl Lewis diagram. The KCl molecule’s core chlorine atom can be represented as follows:

Total outermost valence shell electron of chlorine atom in KCl= 7

Total outermost valence shell electron of potassium atom in KCl= 1

The KCl molecule has one central chlorine and one potassium atoms. Then the total outermost valence shell electrons can be calculated as follows

∴ Total outermost valence shell electrons available for KCl Lewis structure( dot structure) = 7+1*1= 8 valence electrons  in KCl.  

calculation of total valence electron of KCl molecule

Choose the atom with the least electronegative value atom and insert it in the center of the molecular geometry of KCl. We’ll choose the least electronegative value atom in the KCl molecule to place in the center of the KCl Lewis structure diagram in this phase.

But in this case, potassium is the least electronegative than chlorine. Potassium loses one electron and forms potassium positive ions(K+). So that chlorine stays in the central molecular structure. The electronegativity value in periodic groups grows from left to right in the periodic table and drops from top to bottom.

How to draw KCl Lewis Structure?

The first step is to put seven valence electrons around the potassium atom as given in the figure.

Step-2: Lewis Structure of KCl for counting valence electrons around the terminal potassium atoms

As a result, chlorine is the second atom in the periodic table’s halogen family group. Potassium is the third member of the alkaline metal family. It is the fourth element in the periodic table. The electronegative value of the chlorine atom is higher than that of the potassium atom in the KCl molecule. Furthermore, potassium has a one-electron limit since it is the less electronegative element in the KCl molecule.

Chlorine accepts one electron and forms a chloride ion(Cl-). The total lone pair of electrons in the chloride ion is eight. They are negatively charged.

In the KCl Lewis structure diagram, the chlorine atom can be the center atom of the molecule. As a result, central chlorine in the KCl Lewis structure, with one potassium atom arranged in a linear geometry.

How to draw KCl Lewis Structure?

Add valence electron around the chlorine atom, as given in the figure.

Step-3: Lewis dot Structure for KCl generated from step-1 and step-2

Connect the exterior and core central atom of the KCl molecule with one single K-Cl bond. In this stage, use one potassium atom on the outside of the KCl molecule to the central chlorine atom in the middle.

Count how many electrons from the outermost valence shell have been used in the KCl structure so far. K-Cl single bond carries two electrons because the chlorine atom is connected to one potassium atom by K-Cl single bonds. Bond pairings of K-Cl are what they’re called.

So, out of the total of 8 valence electrons available for the KCl Lewis structure, we used four electrons for the KCl molecule’s one K-Cl single bond. The KCl molecule has three lone pairs of electrons in the central chlorine atom.

Place the valence electrons in the K-Cl bond pair starting with the core chlorine, one potassium atom in the KCl molecule. In the KCl Lewis structure diagram, we always begin by introducing valence electrons from the central chlorine atom(in step 2). As a result, wrap around the central chlorine atom’s bond pair valence electrons first (see figure for step2).

The chlorine atom in the molecule gets only 8 electrons around its molecular structure. This central chlorine atom is octet stable. But it has three lone pairs. Chlorine gas(Br2) is a brownish liquid gas. chlorinehlorine is very corrosive in nature. It is one of the very reactive chemical reagents.

Potassium metal is in a soft solid state at normal temperature and pressure. It is used as a reducing agent in the field of organic chemistry. It is highly flammable in nature. It is very reactive in water and alcohol. Water reacts with potassium metal and forms potassium hydroxide. Similarly, alcohol(such as methanol) reacted with potassium and forms potassium methoxide.

Chlorine requires 8 electrons in its outermost valence shell to complete the molecular octet stability, two electrons bond pairs in one K-Cl single bond, and three lone pairs in the central chlorine atom. No lone pairs of electrons on the potassium atoms of the KCl molecule are placed in a linear geometry. Chlorine already shares 8 electrons to the one K-Cl single bonds. Then place the valence electron in the potassium atoms, it placed around one electron on each atom(step-1). There are no valence electrons placed around one potassium atom as lone pair of electrons.

We’ve positioned 8 electrons around the one-terminal potassium atoms(step-3), which is represented by a dot, in the KCl molecular structure above. The chlorine atom completes its molecular octet stability in the KCl molecule because it possesses 2 electrons in its (one K-Cl single ionic bond pairs) bond pairs with one potassium in the outermost valence shell.

How to draw KCl Lewis Structure?

Count how many outermost valence shell electrons have been used so far using the KCl Lewis structure. One electron bond pairs are shown as dots in the KCl chemical structure, whereas one single bond contains two electrons. The outermost valence shell electrons of the KCl molecule(bond pairs) are 2 as a result of the calculation. The total valence electron in a chlorine atom is 8.

So far, we’ve used 8 of the KCl Lewis structure’s total 8 outermost valence shell electrons. Three lone pairs of electrons on the chlorine atom in the linear or tetrahedral geometry of the KCl molecule.

Complete the middle KCl atom stability and, if necessary, apply a covalent bond. The central chlorine atom undergoes octet stability(due to one single bond pair of electrons).

The core atom in the KCl Lewis structure is chlorine, which is bonded to the one potassium atom by single bonds (one K-Cl). With the help of one single bond, it already shares 8 electrons. As a result, the chlorine follows the octet rule and has 8 electrons surrounding it on the one terminal of the KCl molecule’s linear or tetrahedral geometry.

How to calculate the formal charge on chlorine and potassium atoms in KCl Lewis Structure?

Calculating formal charge on the chlorine of KCl molecule:

The formal charge on the KCl molecule’s chlorine central atom often corresponds to the actual charge on that chlorine central atom. In the following computation, the formal charge will be calculated on the central chlorine atom of the KCl Lewis dot structure.

To calculate the formal charge on the central chlorine atom of the KCl molecule by using the following formula:

The formal charge on the chlorine atom of KCl molecule= (V. E(Cl)– L.E(Cl) – 1/2(B.E))

V.E (Cl) = Valence electron in a chlorine atom of KCl molecule

L.E(Cl) = Lone pairs of an electron in the chlorine atom of the KCl molecule.

B.E = Bond pair electron in Br atom of KCl molecule

calculation of formal charge on chlorine atom in KCl molecule

The chlorine core atom (one single bond connected to one potassium atom) of the KCl molecule has seven valence electrons, three lone pairs of electrons(six electrons), and 2 bonding pairing valence electrons. Put these values for the chlorine atom in the formula above.

Formal charge on chlorine atom of KCl molecule = (7- 8-(0/2)) = -1

In the Lewis structure of KCl, the formal charge on the central chlorine atom is -1 (negative charge).

Calculating formal charge on the potassium atom of KCl molecule:

The formal charge on the KCl molecule’s potassium terminal atoms often corresponds to the actual charge on that potassium terminal atoms. In the following computation, the formal charge will be calculated on the terminal potassium atom of the KCl Lewis dot structure.

To calculate the formal charge on the terminal potassium atom of the KCl molecule by using the following formula:

The formal charge on the potassium atom of KCl molecule= (V. E(K)– L.E(K) – 1/2(B.E))

V.E (K) = Valence electron in a potassium atom of KCl molecule

L.E(K) = Lone pairs of an electron in the potassium atom of the KCl molecule.

B.E = Bond pair electron in H atom of KCl molecule

calculation of formal charge on potassium atom in KCl molecule

The potassium terminal atoms of the KCl molecule have one valence electron, no lone pairs of electrons(zero electrons), and two bonding pairing valence electrons(single bond). Put these values for the potassium atom in the formula above.

Formal charge on potassium atom of KCl molecule = (1- 0-(0/2)) =+1

In the Lewis structure of KCl, the formal charge on the terminal potassium atom is +1 (positive charge).

Summary:

In this post, we discussed the method to construct the KCl Lewis structure. First, the valence electrons are placed around the potassium atom and lose one electron. Then it becomes potassium positive ions. Second, place the valence electron on the chlorine atoms and the chlorine atom accepts one electron in its valence shell. Finally, when we combined the first and second steps. It gives KCl Lewis structure. Need to remember that, if you follow the above-said method, you can construct molecular dot structure very easily.

What is the KCl Lewis structure?

KCl Lewis structure is dot representation

What is the formal charge on the KCl Lewis structure?

Zero charges on the KCl molecular structure

The polarity of the molecules

The polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:

Information on potassium chloride(KCl)

Leave a Comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar