Deprecated: Function Elementor\DB::is_built_with_elementor is deprecated since version 3.2.0! Use Plugin::$instance->documents->get( $post_id )->is_built_with_elementor() instead. in /home/u214178821/domains/sciedutut.com/public_html/wp-includes/functions.php on line 5383
NaI Molecular Geometry - Science Education and Tutorials

NaI Molecular Geometry

Sodium iodide(NaI) has the composition of one iodine and one sodium atom. What is the molecular geometry of sodium iodide?. Drawing and predicting the NaI molecular geometry is very easy by following the given method. Here in this post, we described step by step to construct NaI molecular geometry. Iodine and sodium come from the 17th and 1st family groups in the periodic table. Iodine and sodium have seven and one valence electrons respectively.

Key Points To Consider When drawing The NaI Molecular Geometry

A three-step approach for drawing the NaI molecular can be used. The first step is to sketch the molecular geometry of the NaI molecule, to calculate the lone pairs of the electron in the central iodine atom; the second step is to calculate the NaI hybridization, and the third step is to give perfect notation for the NaI molecular geometry.

The NaI molecular geometry is a diagram that illustrates the number of valence electrons and bond electron pairs in the NaI molecule in a specific geometric manner. The geometry of the NaI molecule ion can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory) and molecular hybridization theory, which states that molecules will choose the NaI geometrical shape in which the electrons have from one another in the specific molecular structure.

Finally, you must add their bond polarities characteristics to compute the strength of the one Na-I single bonds (dipole moment properties of the NaI molecular geometry). One sodium-iodine single bonds in the sodium iodide(NaI), for example, are polarised toward the more electronegative value iodine atom, and because (Na-I) single bonds have the same size and polarity, their sum is nonzero due to the NaI molecule’s bond dipole moment due to pulling the electron cloud to the two side of linear geometry, and the NaI molecule is classified as a polar molecule.

NaI Molecular Geometry

The molecule of sodium iodide(with linear shape NaI molecular geometry) is tilted at 180 degrees bond angle of Na-I. It has a difference in electronegativity values between iodine and sodium atoms, with iodine’s pull the electron cloud being greater than sodium’s. But bond polarity of Na-I is not canceled to each other in the linear geometry. As a result, it has a nonzero permanent dipole moment in its molecular structure. The NaI molecule has a nonzero dipole moment due to an unequal charge distribution of negative and positive charges in the linear geometry.

Overview: NaI electron and molecular geometry

According to the VSEPR theory, the NaI molecule ion possesses linear molecular geometry. Because the center atom, iodine, has one Na-I single bond with the one sodium atom surrounding it. The Na-I bond angle is 180 degrees in the linear NaI molecular geometry. The NaI molecule has a linear geometry shape because it contains one sodium atom in the linear and four corners with four lone pairs of electrons.

There is one Na-I single bond at the NaI molecular geometry. After linking the one sodium atom and four lone pairs of electrons on the iodine atom (as iodide ion) in the linear form, it maintains the linear-shaped structure. In the NaI molecular geometry, the Na-I single bond has stayed in the one terminal and four lone pairs of electrons on the iodine atom of the linear molecule.

The center iodine atom of NaI has four lone pairs of electrons, resulting in linear NaI electron geometry. However, the molecular geometry of NaI looks linear-shaped and has four lone pairs of electrons on the iodine of the NaI geometry. It’s the NaI molecule’s slight asymmetrical geometry. As a result, the NaI molecule is more polar.

How to find NaI hybridization and molecular geometry

Calculating lone pairs of electrons on iodine in the NaI geometry:

  1. Determine the number of lone pairs of electrons in the core iodine atom of the Lewis structure. Because the lone pairs of electrons on the iodine atom are mostly responsible for the molecule geometry planar, we need to calculate out how many there are on the central iodine atom of the NaI Lewis structure.

Use the formula below to find the lone pair on the iodine atom of the NaI molecule.

L.P(I) = V.E(I) – N.A(Na-I)


Lone pair on the central iodine atom in NaI = L.P(I)

The core central iodine atom’s valence electron in NaI = V.E(I)

Number of Na-I bond = N.A (Na-I)

calculation for iodine atom lone pair in NaI molecule.

For instance of NaI, the central atom, iodine, has seven electrons in its outermost valence shell, one Na-I single bond connection. This gives a total of one connection.

As a result of this, L.P(I) = (8 –0)=8

The lone pair of electrons in the iodine atom of the NaI molecule is four.

Calculating lone pair of electrons on sodium in the NaI geometry:

Finding lone pair of electrons for the terminal sodium atom is similar to the central iodine atom. We use the following formula as given below

Use the formula below to find the lone pair on the sosium atom of the NaI molecule.

L.P(Na) = V.E(Na) – N.A(Na-I)


Lone pair on the terminal sodium atom in NaI = L.P(Na)

Terminal sodium atom’s valence electron in NaI= V.E(Na)

Number of Na-I bonds = N.A ( Na-I)

calculation for sodium atom lone pair in NaI molecule.

For instance of NaI, their terminal atoms, sodium, have one electron in its outermost valence shell, one Na-I single bond connection. This gives a total of one Na-I single bond connection. But we are considering only one connection for the calculation.

As a result of this, L.P(Na) = (0 –0)=0

The lone pair of electrons in the sodium atom of the NaI molecule is zero. One sodium atom is connected with the central iodine atom.

In the NaI electron geometry structure, the lone pairs on the central iodine atom are four, lone pairs of electrons in the sodium atom have zero. One sodium atom has no lone pairs of electrons.

It means there are four lone pairs of electrons in the core iodine atom (as iodide ion). Four lone pair of electrons on the central iodine atom is responsible for the linear nature of NaI molecular geometry. But in the structure sodium atom is polarised sidewise in their linear geometry.

The four lone pairs of electrons are placed at another side of the NaI geometry. Because the sodium atom is a lower electronegative value as compared with other atoms in the NaI molecule. One sodium atom is polarized towards the sidewise in the NaI structure.

But in reality, the NaI has four lone pairs of electrons in its structure. This makes the NaI more asymmetrical in the structure of the molecule. Because there is electric repulsion between bond pairs and lone pairs.

But some sort of interaction is there between sodium empty hole and lone pairs of electrons of iodine of another NaI molecule. Here, sodium of one molecule acts as an acceptor and iodine of another molecule as a donor. This is called sodium bonding between the two NaI molecules. This is one of the main intermolecular forces in NaI.

But in the central, iodine atom has four lone pairs of electrons and these lone pair electrons are placed in the four corners of the tetrahedral.

Calculate the number of molecular hybridizations of the NaI molecule

What is NaI hybridization? This is a very fundamental question in the field of molecular chemistry. All the molecules are made of atoms. In chemistry, atoms are the fundamental particles. There are four different types of orbitals in chemistry. They are named s, p, d, and f orbitals.

The entire periodic table arrangement is based on these orbital theories. Atoms in the periodic table are classified as follows:

s- block elements

p- block elements

d-block elements

f-block elements

Atoms are classified in the periodic table

NaI molecule is made of one iodine and a sodium atom. The sodium and iodine atoms have s and p orbitals. But sodium atom has only s orbital in the ground state. Sodium comes as the first element in the periodic table. The iodine atom also belongs to the halogen family group. But it falls as the fourth element in the periodic table.

When these atoms combine to form the NaI molecule, its atomic orbitals are mixed and form unique molecular orbitals due to hybridization.

How do you find the NaI molecule’s hybridization? We must now determine the molecular hybridization number of NaI.

The formula of NaI molecular hybridization is as follows:

No. Hyb of NaI= N.A(Na-I bond) + L.P(I)

No. Hy of NaI = the number of hybridizations of NaI

Number of Na-I bonds = N.A (Na-I bonds)

Lone pair on the central iodine atom = L.P(I)

Calculation for hybridization number for NaI molecule

In the NaI molecule, iodine is a core central atom with one sodium atom connected to it. It has four lone pairs of electrons on iodine (as a iodide ion). The number of NaI hybridizations (No. Hyb of NaI) can then be estimated using the formula below.

No. Hyb of NaI= 4+0=4

The NaI molecule ion hybridization is four. The iodine and sodium atoms have s and p orbitals. The sp3 hybridization of the NaI molecule is formed when one s orbital and three p orbitals join together to form the NaI molecular orbital.

Molecular Geometry Notation for NaI Molecule :

Determine the form of NaI molecular geometry using VSEPR theory. The AXN technique is commonly used when the VSEPR theory is used to calculate the shape of the NaI molecule.

The AXN notation of NaI molecule is as follows:

The central iodine atom in the NaI molecule is denoted by the letter A.

The bound pairs (one Na-I bonds) of electrons to the core iodine atom are represented by X.

The lone pairs of electrons on the central iodine atom are denoted by the letter N.

Notation for NaI molecular geometry

We know that iodine is the core atom, with no electron pair bound (one ionic bond Na-I) and four lone pairs of electrons. The general molecular geometry formula for NaI is AN4.

According to the VSEPR theory, if the NaI molecule ion has an AN4 generic formula, the molecular geometry and electron geometry will both be linear-shaped forms.

Name of MoleculeSodium iodide
Chemical molecular formulaNaI
Molecular geometry of NaI linear
Electron geometry of NaI linear
Hybridization of NaIsp3
Bond angle (Na-I)180º degree
Total Valence electron for NaI8
The formal charge of NaI on iodine0

Summary:

In this post, we discussed the method to construct NaI molecular geometry, the method to find the lone pairs of electrons in the central NaI atom, NaI hybridization, and NaI molecular notation. Need to remember that, if you follow the above-said method, you can construct the NaI molecular structure very easily.

What is NaI Molecular geometry?

NaI Molecular geometry is an electronic structural representation of molecules.

What is the molecular notation for NaI molecule?

NaI molecular notation is AX1N3.

The polarity of the molecules

The polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:

Information on sodium iodide(NaI) molecule

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar