Best Overview: NH4+ Molecular Geometry

Drawing and predicting the NH4+ molecular geometry is very easy by following the given method. Here in this post, we described step by step to construct NH4+ molecular geometry. Nitrogen comes from the 15th family group in the periodic table. Nitrogen has five valence electrons. The ammonium ion is the salt of ammonia.

Key Points To Consider When drawing The NH4+ Molecular Geometry

A three-step approach for drawing the NH4+ molecular can be used. The first step is to sketch the molecular geometry of the NH4+ molecule, to calculate the lone pairs of the electron in the central nitrogen atom; the second step is to calculate the NH4+ hybridization, and the third step is to give perfect notation for the NH4+ molecular geometry.

The NH4+ molecular geometry is a diagram that illustrates the number of valence electrons and bond electron pairs in the NH4+ molecule ion in a specific geometric manner. The geometry of the NH4+ molecule ion can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory) and molecular hybridization theory, which states that molecules will choose the NH4+ geometrical shape in which the electrons have from one another in the specific molecular structure.

Finally, you must add their bond polarities characteristics to compute the strength of the N-H bond (dipole moment properties of the NH4+ molecular geometry). The nitrogen-hydrogen bonds in the ammonium ion(NH4+), for example, are polarised toward the more electronegative value nitrogen atom, and because all (N-H) bonds have the same size and polarity, their sum is zero due to the NH4+ molecule’s bond dipole moment due to it oppose to each other in the tetrahedral geometry, and the NH4+ molecule ion is classified as a polar molecule.

The molecule of ammonium ion (with tetrahedral shape NH4+ molecular geometry) is tilted at 109.5 degrees bond angle of H-N-H. It has a difference in electronegativity values between nitrogen and hydrogen atoms, with nitrogen’s pull the electron cloud being greater than hydrogen’s. But bond polarity of N-H is canceled to each other in the tetrahedral geometry. As a result, it has no permanent dipole moment in its molecular structure. The NH4+ molecule ion has no dipole moment due to an equal charge distribution of negative and positive charges.

NH4+ Molecular Geometry

Overview: NH4+ electron and molecular geometry

According to the VSEPR theory, the NH4+ molecule ion possesses tetrahedral molecular geometry. Because the center atom, nitrogen, has four N-H bonds with the hydrogen atoms surrounding it. The H-N-H bond angle is 109.5 degrees in the tetrahedral molecular geometry. The NH4+ molecule ion has a tetrahedral geometry shape because it contains four hydrogen atoms.

There are four N-H bonds at the NH4+ molecular geometry. After linking the four hydrogen atoms and positive charge ions in the tetrahedral form, it maintains the tetrahedral structure. In the NH4+ molecular geometry, the N-H bonds have stayed in the four terminals and positive charge ion on the nitrogen atom of the tetrahedral molecule.

The center nitrogen atom of NH4+ has a positive charge, resulting in tetrahedral electron geometry. However, the molecular geometry of NH4+ looks like a tetrahedral and positive charge ion on the nitrogen of the NH4+ geometry. It’s the NH4+ molecule’s symmetrical geometry. As a result, the NH4+ molecule is nonpolar.

How to find NH4+ hybridization and molecular geometry

Calculating lone pairs of electrons on nitrogen in the NH4+ geometry:

1.Determine the number of lone pairs of electrons on the core nitrogen atom of the NH4+ Lewis structure. Because the lone pairs of electrons on the nitrogen atom is mostly responsible for the NH4+ molecule geometry distortion, we need to calculate out how many there are on the central nitrogen atom of the NH4+ Lewis structure.

Use the formula below to find the lone pair on the nitrogen atom of the NH4+ molecule ion.

L.P(N) = V.E(N) – N.A(N-H)/2

Lone pair on the central nitrogen atom = L.P(N)

The core central nitrogen atom’s valence electron = V.E(N)

Number of N-H bonds = N.A (N-H)

calculation for nitrogen atom lone pair in NH4+ molecule ion

For instance of NH4+, the central atom, nitrogen, has five electrons in its outermost valence shell, four N-H bond connections, and a positive ion in the nitrogen paired with negative counterparts such as Cl-, Br-, and SO4-2, etc. This gives totally of five connections.

As a result of this, L.P(N) = (5 –5)/2=0

In the NH4+ electron geometry structure, the lone pair on the central nitrogen atom is zero. This means NH4+ ion molecular structure in the resonance with the donation of lone pair on positive hydrogen atom and positive charge on the nitrogen atom. This makes nitrogen atom positive in nature.

It means there is a positive charge in the core nitrogen atom. This positive charge on the central nitrogen atom is responsible for the tetrahedral nature of NH4+ molecular geometry.

If you imagine, there is a positive +1 charge on the nitrogen atom of the NH4+ molecule. Then, electronic repulsion of N-H bonds pair and zero lone pair of electrons in the NH4+ ions. That gives stable tetrahedral geometry. No lone pairs of electrons are located on the tetrahedral geometry of NH4+ ion. It makes a stable tetrahedral structure.

But in reality, the NH4+ ion has no lone pairs of electrons in its structure. This makes the NH4+ ion more stable in nature. Because there is no electric repulsion between bond pair and lone pair.

Calculate the number of molecular hybridizations of the NH4+ molecule ion

What is NH4+ hybridization? This is a very fundamental question in the field of molecular chemistry. All the molecules are made by atoms. In chemistry, atoms are the fundamental particles. There are four different types of orbitals in chemistry. They are named s, p, d, and f orbitals.

The entire periodic table arrangement is based on these orbital theories. Atoms in the periodic table are classified as follows:

s- block elements

p- block elements

d-block elements

f-block elements

Atoms are classified in the periodic table

NH4+ molecule ion is made of one nitrogen and four hydrogen atoms. The nitrogen atom has s and p orbitals. Hydrogen comes as the first element from the hydrogen family in the periodic table. The hydrogen atom has only s orbital.

When these atoms combine to form the NH4+ molecule, its atomic orbitals mixed and form unique molecular orbitals due to hybridization.

How do you find the NH4+ molecule’s hybridization? We must now determine the molecular hybridization number of NH4+ ion.

The formula of NH4+ ion molecular hybridization is as follows:

No. Hyb of NH4+ ion= N.A(N-H bonds) + L.P(N)

No. Hy of NH4+ ion= the number of hybridizations of NH4+

Number of N-H bonds = N.A (N-H bonds)

Lone pair on the central nitrogen atom = L.P(N)

Calculation for hybridization number for NH4+ molecule ion

In the NH4+ molecule ion, nitrogen is a core central atom with four hydrogen atoms connected to it, a positive charge on nitrogen, and no lone pairs of electrons. The number of NH4+ hybridizations (No. Hyb of NH4+) can then be estimated using the formula below.

No. Hyb of NH4+= 4+0 =4

The NH4+ molecule ion hybridization is four. The nitrogen atom has s and p orbitals. The hydrogen atom has s orbital. The sp3 hybridization of the NH4+ molecule ion is formed when one S orbital and three p orbitals join together to form the NH4+ ion molecular orbital.

Molecular Geometry Notation for NH4+ Molecule :

Determine the form of NH4+ molecular geometry using VSEPR theory. The AXN technique is commonly used when the VSEPR theory is used to calculate the shape of the NH4+ molecule ion.

The AXN notation of NH4+ molecule is as follows:

The center nitrogen atom in the NH4+ molecule is denoted by the letter A.

The bound pairs (four N-H bonds) of electrons to the core nitrogen atom are represented by X.

The lone pairs of electrons on the central nitrogen atom are denoted by the letter N.

Notation for NH4+ molecular geometry

We know that nitrogen is the core atom, with four electron pairs bound (four N-H) and zero lone pair of electrons. The general molecular geometry formula for NH4+ is AX4.

According to the VSEPR theory, if the NH4+ molecule ion has an AX4 generic formula, the molecular geometry and electron geometry will both tetrahedral forms.

Name of MoleculeAmmonium ion
Chemical molecular formulaNH4+
Molecular geometry of NH4+Tetrahedral
Electron geometry of NH4+Tetrahedral
Hybridization of NH4+sp3
Bond angle (H-N-H)109.5º degree
Total Valence electron for NH4+ ion8
The formal charge of NH4+ ion on nitrogen+1


In this post, we discussed the method to construct NH4+ molecular geometry, the method to find the lone pairs of electrons in the central nitrogen atom, NH4+ hybridization, and NH4+ molecular notation. Need to remember that, if you follow the above-said method, you can construct the NH4+ molecular structure very easily.

What is NH4+ Molecular geometry?

NH4+ Molecular geometry is electronic structural representation of molecule.

What is the molecular notation for NH4+ molecule?

NH4+ molecular notation is AX4.

The polarity of the molecules

Polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

External Reference:

Information on ammonium ion (NH4+) molecule

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar