How to draw SBr4 Lewis Structure?

Sulfur tetrabromide(SBr4) has the composition of one sulfur and four bromine atoms. What is the molecular geometry of sulfur tetrabromide?. Drawing and predicting the SBr4 Lewis Structure is very easy by following the given method. Here in this post, we described step by step to construct Lewis structure of SBr4. Sulfur and bromine come from the 16th and 17th family groups in the periodic table. Sulfur and bromine have six and seven valence electrons respectively.

Key Points To Consider When Drawing The SBr4 Structure

A three-step approach for drawing the SBr4 Lewis structure can be used. The first step is to sketch the Lewis structure of the SBr4 molecule, to add valence electron around the sulfur atom; the second step is to valence electron to the four bromine atoms, and the final step is to combine the step1 and step2 to get the SBr4 Lewis Structure.

The SBr4 Lewis structure is a diagram that illustrates the number of valence electrons and bond electron pairs in the SBr4 molecule. The geometry of the SBr4 molecule can then be predicted using the Valence Shell Electron Pair Repulsion Theory (VSEPR Theory), which states that molecules will choose the SBr4 geometrical shape in which the electrons have from one another.

Finally, you must add their bond polarities to compute the strength of the S-Br bond (dipole moment properties of the SBr4 molecule). The sulfur-bromine bonds in sulfur tetrabromide(SBr4), for example, are polarised toward the more electronegative bromine, and because both bonds have the same size and located around four terminals, their sum is non zero due to the SBr4 molecule’s bond dipole moment and the lone pairs of electron on sulfur atom. The SBr4 molecule is classified as a nonpolar molecule.

How to draw SBr4 Lewis Structure?

The molecule of sulfur tetrabromide (with trigonal bipyramidal molecular geometry) is tilted, the bond angles between sulfur and bromine are slightly less than 102 and 173 degrees, respectively. It has a difference in electronegativity values between sulfur and bromine atoms, with sulfur’s pull being less than bromine’s terminal in the SBr4 molecule. As a result, it has the permanent dipole moment. The SBr4 molecule has a permanent dipole moment due to an equal charge distribution of negative and positive charges. The net dipole moment of the SBr4 molecule is lower than the SBr4 dipole moment.

SBr4 Lewis Structure:

The central atom is sulfur, which is bordered on four terminals with bromine atoms and one lone pair on the sulfur. Sulfur has six outermost valence electrons, indicating that it possesses six electrons in its outermost shell, whereas bromine only has seven valence electrons in its outermost shell. To complete the octet of the bromine atom, a bromine terminal atom requires one electron. If you’re interested in learning more about the bromine octet rule, please see in our previous post.

Four bromine atoms establish covalent connections with the sulfur atom as a result, leaving the sulfur atom with one lone pair. There is one lone pair on the sulfur central atom that resist the bond pairs of the four S-Br. According to VSEPR theory, the electronic repulsion of the lone pair and bond pair leads the SBr4 molecule to take on a trigonal bipyramidal molecular geometry shape.

The SBr4 molecule’s S-Br bonds are arranged in asymmetrical order around the bipyramidal molecular geometry, giving rise to the SBr4 molecular shape. The SBr4 molecule has a bipyramidal molecular geometry because there is electrical repulsion between lone pair and bond pairs of SBr4 molecule.

Electronegative Difference Calculation of SBr4 Molecule:

The sulfur atom has an electronegativity of 2.58, while bromine has an electronegativity of 2.96 in the SBr4 molecule. The difference in electronegativity can be estimated using the method below.

The electronegative value difference between sulfur and bromine

Electronegativity value of sulfur = 2.58

Electronegativity value of bromine= 2.96

Difference of electronegativity value between sulfur and bromine= 2.96 – 2.58= 0.38

Electronegativity difference between S-Br bond calculation of SBr4 molecule

Due to the difference in electronegativity value of less than 0.5, the S-Br bond of the SBr4 molecule becomes nonpolar. Because of this difference in electronegativity, the SBr4 molecule’s S-Br bond becomes nonpolar. The electronegativity of an atom is the strength with which it may attract bound electron pairs to its side. The polarity of SF4 molecule is discussed in our previous post.

As a result, the S-F bond’s dipole moment is high due to the polarization of the bonds, and all S-F bonds’ dipoles are arranged in the bipyramidal molecular geometry. The SBr4 molecule’s total dipole moment is predicted to be lower than SF4 molecule. It has a partial negative charge for bromine atoms and a partial positive charge for the central sulfur atom.

The electron dot structure of the SBr4 molecule is also known as the SBr4 Lewis structure. It determines the number of outermost valence electrons as well as the electrons engaged in the SBr4 molecule’s bond formation. The outermost valence electrons of the SBr4 molecule must be understood while considering the Lewis structure of the molecule.

The sulfur atom is the middle element in SBr4 molecular geometry, with six electrons in its outermost valence electron shell, whereas the bromine atom has seven electrons in its outermost valence electron shell.

The SBr4 molecule has a total of 34 valence electrons as a result of the foregoing above said reasoning. With the core central sulfur atom, the four terminal bromine atoms form covalent bonds, leaving the sulfur atom with one lone pairs on it.

The bipyramidal molecular geometry and structure of the SBr4 molecules are similar to that of the ammonia (NH3) molecule. Because one lone pair of a central sulfur atom create interaction with S-Brbond pairs. The bond angle of the Br-S-Br bond in the bipyramidal molecular geometry are slightly less than102 and 173 degrees, respectively. The S-Br bond lengths are 215 and 290 pm(picometer).

To sketch the SBr4 Lewis structure by following these instructions:

Step-1: SBr4 Lewis dot Structure by counting valence electron

To calculate the valence electron of each atom in SBr4, look for its periodic group from the periodic table. The oxygen and halogen families, which are the 16th and 17th groups in the periodic table, are both made up of sulfur and bromine atoms. In their outermost shells, sulfur and bromine have six and seven valence electrons, respectively.

Because sulfur and bromine are members of the periodic table’s oxygen and halogen family groups, their valence electrons are six and seven, respectively.

Calculate the total number of valence electrons in the SBr4 molecule’s outermost valence shell. The first step is to determine how many electrons are in the SBr4 Lewis structure’s outermost valence shell. An electron in an atom’s outermost shell is known as a valence electron. It is represented by dots in the SBr4 Lewis diagram. The SBr4 molecule’s core carbon atom can be represented as follows:

Total outermost valence shell electron of sulfur atom in SBr4= 6

Total outermost valence shell electron of the bromine atom in SBr4= 7

The SBr4 molecule has one central sulfur atom and four bromine atoms. Then the total outermost valence shell electrons can be calculated as follows

∴ Total outermost valence shell electrons available for SBr4 Lewis structure( dot structure) = 6 +4*7= 34 valence electrons  in SBr4    

calculation of total valence electron of SBr4 molecule

Choose the atom with the least electronegative value atom and insert it in the center of the molecular geometry of SBr4. We’ll choose the least electronegative value atom in the SBr4 molecule to place in the center of the SBr4 Lewis structure diagram in this phase. The electronegativity value in periodic groups grows from left to right in the periodic table and drops from top to bottom.

How to draw SBr4 Lewis Structure?

Step-2: Lewis Structure of SBr4 for constructing around the more electronegative atom

As a result, sulfur is the second atom in the periodic table’s oxygen family group. Bromine is the third member of the halogen family. The electronegative value of the sulfur atom is lower than that of the bromine atom. Furthermore, sulfur has a six electrons limit sincebromine is the most electronegative element in the SBr4 molecule.

In the SBr4 Lewis structure diagram, the sulfur atom can be the center atom. As a result, central sulfur in the SBr4 Lewis structure, with all four bromine arranged in the bipyramidal trigonal geometry.

How to draw SBr4 Lewis Structure?

Step-3: Lewis dot Structure for SBr4 generated from step-1 and step-2

Connect the exterior and core central atom of the SBr4 molecule with four single bonds (S-Br). In this stage, use four single bonds to connect all four bromine atoms on the outside of the SBr4 molecule to the central sulfur atom in the middle.

Count how many electrons from the outermost valence shell have been used in the SBr4 structure so far. Each S-Br bond carries two electrons because each sulfur atom is connected to four bromine atoms by two S-Br bonds. Bond pairings of S-Br are what they’re called.

So, out of the total of 34 valence electrons available for the SBr4 Lewis structure, we used 8 for the SBr4 molecule’s four single (S-Br) bonds. The SBr4 molecule has one lone pair electron in the center of sulfur. We need to put the two extra electrons in the molecular geometry of SBr4.

Place the valence electrons in the S-Br bond pairs starting with the core sulfur and four bromine atoms in the SBr4 molecule. In the SBr4 Lewis structure diagram, we always begin by introducing valence electrons from the central sulfur atom. As a result, wrap around the central sulfur atom’s bond pair valence electrons first.

Sulfur requires 10 electrons in its outermost valence shell to complete the molecular stability, 8 electrons bond pairs in S-Br. Then place two electrons as a lone pair of electrons on sulfur of SBr4 molecule. Sulfur already shares 8 electrons to the four single bonds(S-Br). Then place the valence electron in the bromine atom, it placed around seven electrons(step-2). Totally, 24 valence electrons placed on the four bromine atoms of the SBr4 molecule.

How to draw SBr4 Lewis Structure?

We’ve positioned 10 electrons around the central sulfur atom(step-3), which is represented by a dot, in the SBr4 molecular structure above. The sulfur atom completes its molecular stability in the SBr4 molecule because it possesses 8electrons in its bond pairs with four bromine and one lone pair in the outermost valence shell.

Count how many outermost valence shell electrons have been used so far using the SBr4 Lewis structure. Four electrons are shown as dots in the SBr4 chemical structure, whereas four single bonds each contain two electrons. The outermost valence shell electrons of the SBr4 molecule are 10 + 24= 34 as a result of the calculation.

So far, we’ve used 34 of the SBr4 Lewis structure’s total 34 outermost valence shell electrons. One lone pair of electrons on the sulfur atom in the bipyramidal geometry of SBr4 molecule.

Complete the middle sulfur atom stability and, if necessary, apply a covalent bond. The central sulfur atom undergoes extra octet stability. Because it has a total of ten electrons in the outermost valence shell.

The core atom in the SBr4 Lewis structure is sulfur, which is bonded to the bromine atoms by four single bonds (S-Br). With the help of four single bonds, it already shares eight electrons. As a result, bromine follows the octet rule and has eight electrons surrounding it on the four terminals of the SBr4 molecule’s bipyramidal trigonal geometry.

How to calculate the formal charge on a sulfur atom in SBr4 Lewis Structure?

The formal charge on the SBr4 molecule’s sulfur central atom often corresponds to the actual charge on that sulfur central atom. In the following computation, the formal charge will be calculated on the central sulfur atom of the SBr4 Lewis dot structure.

To calculate the formal charge on the central sulfur atom of the SBr4 molecule by using the following formula:

The formal charge on the sulfur atom of SBr4 molecule= (V. E(S)– L.E(S) – 1/2(B.E))

V.E (S) = Valence electron in a sulfur atom of SBr4 molecule

L.E(S) = Lone pairs of an electron in the sulfur atom of the SBr4 molecule.

B.E = Bond pair electron in S atom of SBr4 molecule

calculation of formal charge on sulfur atom in SBr4 molecule

The sulfur core atom (four single bonds connected to bromine) of the SBr4 molecule has six valence electrons, two lone pair of electrons, and eight bonding electrons. Put these values for the sulfur atom in the formula above.

Formal charge on sulfur atom of SBr4 molecule = (6- 2-(8/2)) =0

In the Lewis structure of SBr4, the formal charge on the central sulfur atom is zero.

Summary:

In this post, we discussed the method to construct the SBr4 Lewis structure. Need to remember that, if you follow above said method, you can construct molecular dot structure very easily.

What is the SBr4 Lewis structure?

SBr4 Lewis structure is dot representation

What is the formal charge on the SBr4 Lewis structure?

Zero charge on the SBr4 molecular structure

The polarity of the molecules

The polarity of the molecules are listed as follows

Lewis Structure and Molecular Geometry

Lewis structure and molecular geometry of molecules are listed below

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Is HBr polar or nonpolar Is HCl polar or nonpolar Is NO2+ Polar or Nonpolar Is H2S Polar or Nonpolar Is PCl3 Polar or Nonpolar